Zum Inhalt

Klassen und Objekte

Wir haben Datentypen kennengelernt, in denen wir bestimmte Werte speichern konnten, z.B. int für ganze Zahlen, boolean für Wahrheitswerte, char für einzelne Zeichen, double für Gleitkommawerte usw. Eine Variable von so einem Wertetyp kann immer genau einen Wert speichern. Das genügt meistens jedoch nicht. Das haben wir bereits gemerkt, als wir nicht nur ein Zeichen speichern wollten, sondern eine ganze Zeichenkette. Dazu haben wir den Datentyp String verwendet. Bei diesem Datentyp war es dann nicht nur so, dass wir ganze Zeichenketten speichern konnten, sondern dazu kamen auch noch Methoden, die in diesem Datentyp definiert sind, die wir zur Manipulation von solchen Zeichenketten verwenden können, z.B. charAt(), length(), substring() usw.

Wenn wir nun z.B. Autos speichern wollen oder Adressen oder Studentinnnen, dann gibt es dafür keinen passenden Datentyp in Java. Das wollen wir nun ändern. Wir bauen uns eigene Datentypen.

Wenn wir uns die Welt betrachten, dann besteht diese aus lauter Objekten, die miteinander in Beziehung stehen. Man ganz konkret über bestimmte Objekte sprechen:

  • „das ist ein schöner Stuhl“
  • „das ist ein teurer Tisch“
  • „das Auto ist blau“

oder ganz allgemein über eine Klasse von Objekten:

  • „Computer machen immer, was sie wollen“
  • „die Bahnen kommen immer zu spät“
  • "Klausuren sind immer schwer"

In der Welt des objektorientierten Programmierens sind die Klassen die "Muster" oder die "Bauanleitungen" für konkrete Objekte. Mit Klassen beschreiben wir die allgemeinen Eigenschaften, die für alle Objekte dieser Klasse gelten. Klassen beschreiben

  • eine Struktur der Objekte (das sind die Objektvariablen) und
  • ein Verhalten dieser Objekte (das sind die Objektmethoden).

Insgesamt sprechen wir bei der Struktur und dem Verhalten von den Eigenschaften einer Klasse. Eine Klasse ist ein Datentyp und jeder "Wert" ist ein konkretes Objekt von diesem Typ. Von einer Klasse können wir beliebig viele Objekte erzeugen.

Beachte!

In der objektorientierten Programmierung unterscheiden wir sehr genau zwischen Objekten und Werten. Werte sind soetwas wie 4, true, 5.5 usw. Solche Werte haben kein Verhalten. Objekte haben aber ein Verhalten (die Objektmethoden - siehe z.B. für String die Methoden charAt(), length(), substring()). Wir werden sehr detailliert auf die Unterschiede zwischen Werten und Objekten eingehen. Die Datentypen, die wir erstellen, sind sogenannte Referentypen. Eine Variable von so einem Referenztyp zeigt auf (referenziert) ein Objekt.

Ein erster eigener Datentyp Adresse

Wir erstellen uns einfach mal einen neuen Datentyp. Wir nennen ihn Adresse. In unserer IDE (Eclipse) erstellen wir eine neue Klasse Adresse. Achtung! Wenn wir einen Datentyp erzeugen, dann ohne main()-Methode. Die main()-Methode ist keine Eigenschaft eines Datentyps. Unsere neue Klasse sieht also so aus:

1
2
3
4
public class Adresse
{

}

Wir erstellen uns eine weitere Klasse (am besten im gleichen Paket) mit main()-Methode - wir nennen die Klasse Testklasse:

1
2
3
4
5
6
7
8
9
public class Testklasse
{

    public static void main(String[] args)
    {
        Adresse adresse1;

    }
}

In der main()-Methode können wir nun bereits den Datentyp verwenden, um eine Variable zu deklarieren. Wir nennen die Variable adresse1 und weisen ihr den Typ Adresse zu. Wir haben unseren ersten eigenen Datentyp erstellt!

Eigenschaften definieren

Unser Datentyp Adresse hat noch keine Eigenschaften. Als erstes definieren wir uns Objektvariablen für unsere Klasse:

1
2
3
4
5
6
7
8
9
public class Adresse
{
    // --- Objektvariablen -----
    public String strasse;
    public int nummer;
    public int postleitzahl;
    public String wohnort;

}

Die Struktur aller Objekte unserer Klasse sieht also wie folgt aus. Jedes Objekt vom Typ Adresse hat

  • eine eigene Variable strasse (vom Typ String),
  • eine eigene Variable nummer (vom Typ int),
  • eine eigene Variable postleitzahl (vom Typ int),
  • eine eigene Variable wohnort (vom Typ String).

Objektvariablen sind global!

Bis jetzt hatten wir unsere Variablen immer lokal in einer Methode deklariert. Diese Variablen waren nur in der Methode sichtbar und existierten auch nur in der Methode, in der sie deklariert wurden. Siehe dazu Sichtbarkeit und Lebensdauer von lokalen Variablen.

Objektvariablen sind in der Klasse deklariert, nicht in einer Methode - sie sind global. Objektvariablen sind deshalb in der gesamten Klasse sichtbar, d.h. es kann in der gesamten Klasse daruf zugegriffen werden (in jeder Methode der Klasse). Objektvariablen existieren für ein konkretes Objekt. Jedes Objekt hat seine eigenen Objektvariablen. Diese existieren für das Objekt also so lange, solange das Objekt existiert.

Objektvariablen sind global und sind in allen Methoden der Klasse sichtbar, d.h. es kann in allen Methoden der Klasse auf die Objektvariablen zugegriffen werden.

Objektmethode hinzufügen

Jetzt wollen wir auch noch ein Verhalten implementieren und definieren uns dazu eine Objektmethode:

public class Adresse
{
    // --- Objektvariablen -----
    public String strasse;
    public int nummer;
    public int postleitzahl;
    public String wohnort;

    // --- Objektmethoden ------
    public String getAdresse()
    {
        return strasse + " " + nummer + " in " + postleitzahl + " " + wohnort;
    }       
}

Achtung! Objektmethoden sind nicht static! Methoden, die als static deklariert sind, können ausgeführt werden, ohne ein Objekt der Klasse zu erzeugen. Von unseren bisherigen Klassen Uebung1, Uebung2, Aufgabe1, Aufgabe2 usw. haben wir keine Objekte erzeugt und wollten aber die Methoden trotzdem aufrufen. Wir haben sie deshalb als static deklariert. Von den Klassen, die wir nun als Datentyp implementieren, wollen wir Objekte erzeugen. Deshalb werden die Methoden nicht als static deklariert. Objektmethoden können nur von Objekten aufgerufen werden! Jedes Objekt der Klasse Adresse hat seine eigene Methode getAdresse().

Objekte erzeugen - der Konstruktor

Wir haben jetzt einen "Bauplan" für alle Objekte vom Datentyp Adresse erzeugt. Nun wollen wir nach diesem Bauplan Objekte von der Klasse (vom Datentyp) Adresse erzeugen. Das geschieht mithilfe des Konstruktors.

der Konstruktor einer Klasse heißt genau wie die Klasse selbst, ist aber eine Methode (z.B. Adresse())

Um ein Objekt der Klasse zu erzeugen, verwenden wir das Schlüsselwort new und rufen dann den Konstruktor der Klasse auf:

new Klassenname();

Wir erzeugen in der main()-Methode der Testklasse zwei Objekte der Klasse Adresse:

1
2
3
4
5
6
7
8
9
public class Testklasse
{

    public static void main(String[] args)
    {
        Adresse adresse1 = new Adresse();       // erstes Objekt erzeugt
        Adresse adresse2 = new Adresse();       // zweites Objekt erzeugt
    }
}

Das generelle Vorgehen bei der Erzeugung eines Objektes zeigt die folgende Abbildung:

konstruktor

Wir haben nun zwei Objekte vom Typ Adresse erstellt. Die Referenzvariable adresse1 zeigt auf das erste Objekt (Sie können auch sagen, dass adresse1 der Name des ersten Objektes ist) und die Referenzvariable adresse2 zeigt auf das zweite Objekt. Jedes dieser beiden Objekte hat seine eigenen Objektvariablen strasse, nummer, postleitzahl und wohnort und seine eigene Objektmethode getAdresse(). Wir werden jetzt auf diese Eigenschaften zugreifen.

Zugriff auf Objekteigenschaften - Punktnotation

Auf die Eigenschaften eines Objektes können wir über die Referenzvariable mittels Punktnotation zugreifen. Wir kennen das bereits z.B. von Random, wenn wir über die Variable r auf die nextInt()-Methode zugreifen r.nextInt() oder von String mit dem Zugriff pi.charAt() usw. Die Syntax ist also wie folgt:

referenzVariable.eigenschaft

Wir verwenden die Punktnotation für unsere Objekte vom Typ Adresse, um ihnen Werte für die Objektvariablen zuzuweisen und jeweils auf die Objektmethode zuzugreifen:

public class Testklasse
{

    public static void main(String[] args)
    {
        Adresse adresse1 = new Adresse();
        Adresse adresse2 = new Adresse();

        adresse1.strasse = "Wilhelminenhofstr.";
        adresse1.nummer = 75;
        adresse1.postleitzahl = 12459;
        adresse1.wohnort = "Berlin";

        adresse2.strasse = "Treskowallee";
        adresse2.nummer = 8;
        adresse2.postleitzahl = 10318;
        adresse2.wohnort = "Berlin";

        System.out.println(adresse1.getAdresse());
        System.out.println(adresse2.getAdresse());
    }
}

Wir weisen also den jeweiligen Objektvariablen der beiden Objekte Werte zu und geben diese jeweils mithilfe der getAdresse()-Methode aus. Es ist ganz wichtig, zu verstehen, dass jedes Objekt seine eigenen Objektvariablen und seine eigenen Objektmethoden hat. Zugriff auf diese Variablen und Methoden gibt es stets nur über ein Objekt!

Die Ausgabe für obiges Beispiel sieht so aus:

Wilhelminenhofstr. 75 in 12459 Berlin
Treskowallee 8 in 10318 Berlin

Alle Objekte werden also nach dem gleichen "Bauplan" erstellt. Alle Objekte vom Typ Adresse haben die Eigenschaften:

  • strasse,
  • nummer,
  • postleitzahl,
  • wohnort und
  • getAdresse()

Wenn wir die Klasse Adresse ändern, dann ändern sich auch die Eigenschaften entsprechend für alle Objekte dieser Klasse.

Datenkapselung (Information Hiding) - das Schlüsselwort private

Ein wesentlicher Grundsatz der objektorientierten Programmierung ist das Prinzip der Datenkapselung (auch data hiding oder information hiding genannt). Dieses Prinzip dient dem Datenschutz. Wir wollen vermeiden, dass

  • Unbefugte die Struktur (die Daten) unserer Objekte kennen und
  • Unbefugte die Daten ändern können, ohne dass wir es erlauben.

Angenommen, Sie haben eine Klasse Konto und es wäre möglich, ganz einfach auf ihre pin zuzugreifen. Das wäre fatal. Bereits der lesende Zugriff darauf könnte schädlich sein, aber genau so ärgerlich wäre es, wenn die pin einfach durch Fremde geändert werden könnte. Wir wollen deshalb sowohl den lesenden als auch den schreibenden Zugriff auf unsere Daten (auf unsere Objektvariablen) verbieten. Dazu deklarieren wir unsere Objektvariablen als private:

public class Adresse
{
    // --- Objektvariablen -----
    private String strasse;         // Zugriff nur innerhalb der Klasse
    private int nummer;             // Zugriff nur innerhalb der Klasse
    private int postleitzahl;       // Zugriff nur innerhalb der Klasse
    private String wohnort;         // Zugriff nur innerhalb der Klasse

    // --- Objektmethoden ------
    public String getAdresse()
    {
        return strasse + " " + nummer + " in " + postleitzahl + " " + wohnort;
    }       
}

Wir haben die Sichtbarkeit der Objektvariablen in unserer Klasse geändert. Vorher waren die Objektvariablen als public deklariert. Das führte dazu, dass sie von allen anderen Klassen gelesen und geschrieben werden konnten (z.B. von unserer Testklasse). Indem wir die Variablen als private deklarieren, ist der Zugriff darauf außerhalb unserer Klasse nicht mehr möglich.

Wenn wir uns jetzt unsere Testklasse anschauen, dann sehen wir Fehler:

public class Testklasse
{

    public static void main(String[] args)
    {
        Adresse adresse1 = new Adresse();
        Adresse adresse2 = new Adresse();

        adresse1.strasse = "Wilhelminenhofstr.";    // Fehler: The field Adresse.strasse is not visible
        adresse1.nummer = 75;                       // Fehler: The field Adresse.nummer is not visible
        adresse1.postleitzahl = 12459;              // Fehler: The field Adresse.postleitzahl is not visible
        adresse1.wohnort = "Berlin";                // Fehler: The field Adresse.wohnort is not visible

        adresse2.strasse = "Treskowallee";          // Fehler: The field Adresse.strasse is not visible
        adresse2.nummer = 8;                        // Fehler: The field Adresse.nummer is not visible
        adresse2.postleitzahl = 10318;              // Fehler: The field Adresse.postleitzahl is not visible
        adresse2.wohnort = "Berlin";                // Fehler: The field Adresse.wohnort is not visible

        System.out.println(adresse1.getAdresse());
        System.out.println(adresse2.getAdresse());
    }
}

Die Testklasse lässt sich nun nicht mehr compilieren und ausführen. Auch lesende Zugriffe, z.B. System.out.println(adresse1.wohnort); sind nicht mehr möglich. Beachten Sie aber, dass wir weiterhin die Methode getAdresse() aufrufen können. Sie ist als public deklariert und deshalb in anderen Klassen durch Adresse-Objekte ausführbar. Wir könnten auch die Methode als private deklarieren, dann würde auch sie nicht mehr ausführbar in anderen Klassen sein.

Auf eine als private deklarierte Variable kann außerhalb der Klasse, in der sie deklariert ist, nicht zugegriffen werden.

Eine als private deklarierte Methode kann außerhalb der Klasse, in der sie definiert ist, nicht ausgeführt (aufgerufen) werden.

Wie können wir unseren Objektvariablen aber nun Werte zuweisen? Dafür gibt es zwei Antworten

  1. durch einen parametrisierten Konstruktor und
  2. durch sogenannte Setter

Wir betrachten zunächst den parametrisierten Konstruktor.

Ein eigener Konstruktor

Wir haben einen Konstruktor bereits kennengelernt. Ein Konstruktor ist eine Methode, die genau wie die Klasse heißt (also auch großgeschrieben) und mit runden Klammern. Wir haben den Konstruktor auch bereits verwendet, nämlich zur Erzeugung von Objekten (genau dafür ist er auch da). Betrachten wir nochmal die beiden Aufrufe:

Adresse adresse1 = new Adresse();   // Aufruf des Standardkonstruktors
Adresse adresse2 = new Adresse();   // Aufruf des Standardkonstruktors

Wir konnten die Objekte vom Typ Adresse mithilfe des Konstrutors Adresse() erzeugen. Dies ist ein sogenannter Standardkonstruktor, denn er existiert automatisch für jede neue Klasse (für jeden Datentyp), die wir erstellen. Jetzt wollen wir aber einen eigenen Konstruktor definieren, den wir in Zukunft zur Erzeugung unserer Adresse-Objekte verwenden wollen. In unserem neuen Konstruktor wollen wir nämlich bereits Werte als Parameter übergeben, die für die Initialisierung der Objektvariablen verwendet werden sollen. Wir erweitern unsere Klasse Adresse um einen solchen Konstruktor:

public class Adresse
{
    // --- Objektvariablen -----
    private String strasse;         // Zugriff nur innerhalb der Klasse
    private int nummer;             // Zugriff nur innerhalb der Klasse
    private int postleitzahl;       // Zugriff nur innerhalb der Klasse
    private String wohnort;         // Zugriff nur innerhalb der Klasse

    // --- Konstruktor ---------
    public Adresse(String str, int nr, int plz, String ort)
    {
        strasse = str;
        nummer = nr;
        postleitzahl = plz;
        wohnort = ort;
    }

    // --- Objektmethoden ------
    public String getAdresse()
    {
        return strasse + " " + nummer + " in " + postleitzahl + " " + wohnort;
    }       
}

In den Zeilen 10-16 haben wir einen solchen Konstruktor hinzugefügt. Wir übergeben dem Konstruktor vier Parameterwerte. Diese Werte werden verwendet, um unsere Objektvariablen zu initialisieren. Der Konstruktor wird aufgerufen, um ein neues Objekt zu erzeugen. Wir verwenden ihn hinter dem Schlüsselwort new.

Bei der Definition eines solchen Konstruktors sind zwei Dinge zu beachten:

  1. Der Konstruktor heißt exakt wie die Klasse (also auch Großschreibung beachten).
  2. Der Konstruktor hat keinen Rückgabetyp (auch nicht void).

Die Aufgabe eines Konstruktors ist einzig und allein Objekte der Klasse zu erzeugen. Die "Rückgabe" eines solchen Konstruktors ist also ein Objekt der Klasse. Theoretisch wäre der Rückhgabetyp hier also Adresse. Aber wie gesagt, bei der Definition eines Konstruktors gibt man keinen Rückgabetyp an!

Wenn wir uns nun erneut die Testklasse anschauen, dann sind durch die Definition eines eigenen Konstruktors weitere Fehler hinzugekommen:

public class Testklasse
{

    public static void main(String[] args)
    {
        Adresse adresse1 = new Adresse();           // Fehler: The constructor Adresse() is undefined
        Adresse adresse2 = new Adresse();           // Fehler: The constructor Adresse() is undefined

        adresse1.strasse = "Wilhelminenhofstr.";    // Fehler: The field Adresse.strasse is not visible
        adresse1.nummer = 75;                       // Fehler: The field Adresse.nummer is not visible
        adresse1.postleitzahl = 12459;              // Fehler: The field Adresse.postleitzahl is not visible
        adresse1.wohnort = "Berlin";                // Fehler: The field Adresse.wohnort is not visible

        adresse2.strasse = "Treskowallee";          // Fehler: The field Adresse.strasse is not visible
        adresse2.nummer = 8;                        // Fehler: The field Adresse.nummer is not visible
        adresse2.postleitzahl = 10318;              // Fehler: The field Adresse.postleitzahl is not visible
        adresse2.wohnort = "Berlin";                // Fehler: The field Adresse.wohnort is not visible

        System.out.println(adresse1.getAdresse());
        System.out.println(adresse2.getAdresse());
    }
}

Dadurch, dass wir einen eigenen Konstruktor geschrieben haben, existiert der Standardkonstruktor nicht mehr (siehe Zeilen 6 und 7). Wir müssen (und wollen ja auch) nun unseren eigenen Konstruktor verwenden, um Objekte zu erzeugen. Wir passen die Testklasse entsprechend an:

public class Testklasse
{

    public static void main(String[] args)
    {
        Adresse adresse1 = new Adresse("Wilhelminenhofstr.", 75, 12459, "Berlin");          
        Adresse adresse2 = new Adresse("Treskowallee", 8, 10318, "Berlin");         

        System.out.println(adresse1.getAdresse());
        System.out.println(adresse2.getAdresse());
    }
}

In den Zeilen 6 und 7 verwenden wir nun den eigenen Konstruktor und übergeben die Werte für die Objektvariablen als Parameter. Bei der Erzeugung der Objekte werden die Objektvariablen nun gleich initialisiert. Der direkte Zugriff auf die Objektvariablen wurde entfernt, da dieser aufgrund der private-Deklaration nicht mehr möglich ist. Die Ausgaben in Zeilen 9 und 10 zeigen aber, dass die Objekte die entsprechenden Werte enthalten:

Wilhelminenhofstr. 75 in 12459 Berlin
Treskowallee 8 in 10318 Berlin

Die Objekte erhalten somit gleich bei der Erzeugung alle Werte für die Objektvariablen und es ist nun auch nicht mehr möglich, diese Werte zu ändern. Ein direkter Zugriff auf die Objektvariablen ist nicht möglich. Die einzigen Wertzuweisungen finden im Konstruktor statt. Objekte, deren Werte nicht mehr geändert werden können, heißen immutable objects (unveränderliche Objekte). Sehr häufig ist es wünschenswert, dass Objekte immutable sind - das vermeidet Fehler. Wir kommen (sehr viel später) nochmal darauf zu sprechen.

Die einzige Schnittstelle (also die Möglichkeiten anderer Klassen unseren neuen Datentyp Adresse zu nutzen) unserer Klasse besteht nun aus zwei Methoden: dem Konstruktor zum Erzeugen eines Objektes und der Methode getAdresse(). Wenn wir aber z.B. nur den wohnort wissen wollen, dann ist es derzeit noch nicht möglich. Wir wollen deshalb den lesenden Zugriff auf unsere Objektvariablen erlauben und definieren uns dafür sogenannte Getter.

getXXX()-Methoden - Getter

Da die Objektvariablen alle als private deklariert sind, ist außerhalb der Klasse Adresse kein Zugriff auf diese Variablen möglich. Wir können ihnen weder Werte zuweisen, noch deren Werte auslesen. Wir haben bereits gesagt, dass dies ein Feature der objektorientierten Programmierung ist, ein solches information hiding einfach durchführen zu können.

Wir können jetzt steuern, ob und wie der Zugriff doch möglich sein soll. Wenn man bspw. den lesenden Zugriff erlauben möchte, dann definiert man sich innerhalb der Klasse sogenannte get-Methoden (Getter). Eine solche get-methode gibt den Wert einer Objektvariablen zurück. Es wird somit ein lesender Zugriff auf den Wert der Variablen ermöglicht. Für unsere Klasse schreiben wir uns nun für jede Objektvariable einen eigenen Getter:

  • getWohnort() gibt den Wert von wohnort zurück, ist also vom Rückgabetyp String
  • getPostleitzahl() gibt den Wert von postleitzahl zurück, ist also vom Rückgabetyp int
  • getStrasse() gibt den Wert von strasse zurück, ist also vom Rückgabetyp String
  • getNummer() gibt den Wert von nummer zurück, ist also vom Rückgabetyp int

Unsere Klasse Adresse sieht nun wie folgt aus:

public class Adresse
{
    // --- Objektvariablen -----
    private String strasse;
    private int nummer;
    private int postleitzahl;
    private String wohnort;

    // --- Konstruktor ---------
    public Adresse(String str, int nr, int plz, String ort)
    {
        strasse = str;
        nummer = nr;
        postleitzahl = plz;
        wohnort = ort;
    }

    // --- Objektmethoden ------
    public String getAdresse()
    {
        return strasse + " " + nummer + " in " + postleitzahl + " " + wohnort;
    }

    public String getStrasse()
    {
        return strasse;
    }

    public int getNummer()
    {
        return nummer;
    }

    public int getPostleitzahl()
    {
        return postleitzahl;
    }

    public String getWohnort()
    {
        return wohnort;
    }
}

Unsere Schnittstelle hat sich also erweitert. Es sind jetzt auch mehr Methoden unserer Klasse Adresse nutzbar. Wir probieren die Methoden in unserer Testklasse aus:

public class Testklasse
{

    public static void main(String[] args)
    {
        Adresse adresse1 = new Adresse("Wilhelminenhofstr.", 75, 12459, "Berlin");          
        Adresse adresse2 = new Adresse("Treskowallee", 8, 10318, "Berlin");         

        System.out.println(adresse1.getAdresse());
        System.out.println(adresse2.getAdresse());

        System.out.println("Strasse Nr  : " + adresse1.getStrasse() + " " +  adresse1.getNummer());
        System.out.println("PLZ Wohnort : " + adresse1.getPostleitzahl() + " " + adresse1.getWohnort());

        System.out.println("Strasse Nr  : " + adresse2.getStrasse() + " " +  adresse1.getNummer());
        System.out.println("PLZ Wohnort : " + adresse2.getPostleitzahl() + " " +  adresse1.getWohnort());
    }
}

Beachten Sie, dass der Aufruf unserer get-Methoden auch wieder nur für konkrete Objekte erfolgen kann, hier also für adresse1 und adresse2. Wir greifen also wieder mittels Punktnotation auf diese Methoden zu. Wir sehen, dass wir nun mithilfe der Getter lesenden Zugriff auf die Objektvariablen haben - in der Testklasse können also die einzelnen Werte der Objektvariablen der jeweiligen Adresse-Objekte ausgelesen werden.

Success

Wir haben unseren ersten eigenen Datentyp erstellt! Wir haben dazu eine Klasse geschrieben. Die Klasse enthält Objektvariablen und Objektmethoden. Wir haben mithilfe des Schlüsselwortes new und dem Aufruf eines Konstruktors Objekte dieser Klasse erzeugt. Über die Punktnotation können wir auf die Objektmethoden zugreifen und diese ausführen. Wir haben außerdem das Schlüsselwort private kennengelernt. Auf Objektvariablen und Objektmethoden, die als private deklariert sind, kann außerhalb der Klasse nicht zugegriffen werden. Um doch einen lesenden Zugriff auf die Werte der Objektvariablen zu ermöglichen, haben wir Getter definiert.


Wir wollen jetzt das Neuerlernte an weiteren Beispielen festigen.

Eine weiterer Datentyp Point

Angenommen, wir wollen in einem kartesischen Koordinatensystem einen Punkt beschreiben, also soetwas wie in der folgenden Abbildung:

punkt

Um uns eine eigene Klasse für Point zu schreiben, überlegen wir uns zunächst, was die allgemeine Struktur eines solchen Punktes ist. Das ist recht leicht aus der oberen Abbildung zu erkennen: ein Punkt wird durch zwei int-Werte x und y beschrieben. Dieses werden also unsere Objektvariablen:

1
2
3
4
5
6
public class Point
{
    // --- Objektvariablen -----
    private int x;
    private int y;
}

Wir setzen die Objektvariablen nun gleich auf private. Wenn keine zwingenden Gründe dagegen sprechen (und das ist fast nie der Fall), deklarieren wir unsere Objektvariablen stets als private, um dem Prinzip des information hiding zu entsprechen. Hier nochmal eine Übersicht der bisherigen Begriffe und Bedeutungen:

point

Wir erstellen uns auch gleich einen parametrisierten Konstruktor, um den Objektvariablen bereits beim Erzeugen der Objekte ihre Werte zuzuweisen:

public class Point
{
    // --- Objektvariablen -----
    private int x;
    private int y;

    // --- Konstruktor ---------
    public Point(int px, int py)
    {
        x = px;
        y = py;
    }
}

Wie wir bereits wissen, heißt der Konstruktor exakt wie die Klasse und hat keinen Rückgabetyp (auch nicht void). Achten Sie darauf, dass die Parameter (derzeit noch) anders heißen, als die Objektvariablen. Wir haben ansonsten innerhalb des Konstruktors einen Namenskonflikt. Diesen werden wir auflösen, wenn wir das Schlüsselwort this kennenlernen.

In unserer Testklasse können wir uns nun einige Point-Objekte erzeugen:

public class Testklasse
{

    public static void main(String[] args)
    {
        Point p1 = new Point(1, 2);
        Point p2 = new Point(2, 4);
        Point p3 = new Point(4, 6);
        Point p4 = new Point(5, 3);
    }
}

Wir erstellen uns also vier Point-Objekte. Die Variablen p1, p2, p3 und p4 referenzieren jeweils ein Point-Objekt und sind vom Typ Point. Wir können uns die vier Objekte wie folgt veranschaulichen:

point

Jedes Point-Objekt hat also seine eigenen Objektvariablen mit den dazugehörigen Werten.

Getter und eine print()-Methode für Point

Wir wollen jetzt, dass außerhalb der Klasse die Werte von x und y ausgelesen werden können. Dazu definieren wir uns Getter, also eine getX()- und eine getY()-Methode. Außerdem wollen wir eine print()-Methode zur Klasse Point hinzufügen, um die Werte von x und y auf die Konsole auszugeben. Die Klasse Point sieht nun so aus:

public class Point
{
    // --- Objektvariablen -----------
    private int x;
    private int y;

    // --- Konstruktor ---------------
    public Point(int px, int py)
    {
        x = px;
        y = py;
    }

    // --- Getter --------------------
    public int getX()
    {
        return x;
    }

    public int getY()
    {
        return y;
    }

    // --- weitere Objektmethoden ----
    public void print()
    {
        System.out.println("[ x=" + x + ", y=" + y + " ]");
    }
}

Wir testen die neuerstellten Objektmethoden in unserer Testklasse:

public class Testklasse
{

    public static void main(String[] args)
    {
        Point p1 = new Point(1, 2);
        Point p2 = new Point(2, 4);
        Point p3 = new Point(4, 6);
        Point p4 = new Point(5, 3);

        System.out.println(" p1 : ( " + p1.getX() + ", " + p1.getY() + " )");
        System.out.println(" p2 : ( " + p2.getX() + ", " + p2.getY() + " )");
        System.out.println(" p3 : ( " + p3.getX() + ", " + p3.getY() + " )");   
        System.out.println(" p4 : ( " + p4.getX() + ", " + p4.getY() + " )");

        p1.print();
        p2.print();
        p3.print();
        p4.print();
    }
}

Wir greifen also wieder über die jeweilige Referenzvariable p1, p2, p3 bzw. p4 über Punktnotation auf die Objektmethoden zu. Beachten Sie, dass - genau wie für die Objektvariablen - auch bei den Objektmethoden jedes Objekt "seine eigene" Objektmethode hat. p1.getX() gibt also genau den x-Wert des Objektes aus, auf das p1 zeigt (1) und p2.getX() gibt also genau den x-Wert des Objektes aus, auf das p2 zeigt (2). Die print()-Methode gibt genau die x- und y-Werte des Objektes aus, das die print()-Methode aufgerufen hat. Unsere vier Objekte können wir uns nun also so veranschaulichen:

point

Die Ausgabe sieht so aus:

 p1 : ( 1, 2 )
 p2 : ( 2, 4 )
 p3 : ( 4, 6 )
 p4 : ( 5, 3 )
[ x=1, y=2 ]
[ x=2, y=4 ]
[ x=4, y=6 ]
[ x=5, y=3 ]

Wir erstellen eine weitere Objektmethode für die Klasse Point, um einen Punkt zu verschieben.

Objektmethode translate() für Point

Wir wollen einen Punkt um ein deltaX nach links oder rechts und um ein deltaY nach oben oder unten verschieben:

point

Angenommen, unser Punkt ist, wie in der obigen Abbildung gezeigt, bei x=1 und y=2 und er soll um deltaX=4 nach rechts und um deltaY=3 nach oben verschoben werden, dann ist er nach translate(4,3) bei x=5 und y=5. Wir implementieren die Objektmethode in der Klasse Point wie folgt:

    public void translate(int deltaX, int deltaY)
    {
        x = x + deltaX;
        y = y + deltaY;
    }

Beachten Sie, dass der Rückgabetyp void ist. Das hatten wir bisher immer nur bei Methoden, in denen eine Ausgabe auf die Konsole erfolgte. Bei Objektmethoden wird dies nun häufig vorkommen. In der Methode translate() werden die Werte von den Objektvariablen x und y neu gesetzt. Sie ergeben sich hier aus den alten Werten von x und y und der Addition mit deltaX bzw. deltaY. Beachten Sie auch, dass die Werte von deltaX und deltaY negativ sein können. Dann wird der Punkt nach links bzw. nach unten verschoben. Im Ergebnis der Ausführung der Methode translate() haben die Objektvariablen des Objektes, das diese Methode aufgerufen hat, neue Werte. Wir testen das in unserer Testklasse:

public class Testklasse
{

    public static void main(String[] args)
    {
        /* hier gekuerzt - siehe oben                       */
        /* die Erzeugung der Objekte muss bleiben           */
        /* Testen der Getter und print() kann auch bleiben  */ 

        p1.print();             // [ x=1, y=2 ]
        p1.translate(4, 3);
        p1.print();             // [ x=5, y=5 ]

        p4.print();             // [ x=5, y=3 ]
        p4.translate(-3, -1);
        p4.print();             // [ x=2, y=2 ]
    }
}

Vergleiche mit anderen Objekten gleichen Typs

Angenommen, ein Punkt möchte "wissen", ob er selbst weiter links positioniert ist, als ein anderer Punkt. Dann muss er seinen eigenen x-Wert mit dem x-Wert des anderen Punktes vergleichen. Wenn wir dafür eine Objektmethode schreiben wollen, dann müssen wir den anderen Punkt als Parameter übergeben. Das ist kein Problem:

    public boolean isLeft(Point otherPoint)
    {
        return (x < otherPoint.x);
    }

Wir übergeben der Objektmethode ein Objekt vom Typ Point. Wir wissen, dass jedes Point-Objekt folgende Eigenschaften hat:

  • x,
  • y,
  • getX(),
  • getY(),
  • print() und
  • translate()

Auf diese Eigenschaften können wir natürlich auch innerhalb der Klasse über die Punktnotation zugreifen. Hierbei ist anzumerken, dass wir innerhalb der Klasse auch direkt auf die x- und y-variablen zugreifen können. Der Sichtbarkeitsmodifizierer private besagt nur, dass wir nicht außerhalb der Klasse auf die Objektvariablen zugreifen können. Innerhalb der Klasse ist der direkte Zugriff erlaubt! Wir hätten aber auch über die getX()-Methode den Wert von x von otherPoint auslesen können.

Wir erweitern um die Methoden isRight(), isAbove(), isBelow(). Die gesamte Klasse Point sieht dann so aus:

public class Point
{
    // --- Objektvariablen -----------
    private int x;
    private int y;

    // --- Konstruktor ---------------
    public Point(int px, int py)
    {
        x = px;
        y = py;
    }

    // --- Getter --------------------
    public int getX()
    {
        return x;
    }

    public int getY()
    {
        return y;
    }

    // --- weitere Objektmethoden ----
    public void print()
    {
        System.out.println("[ x=" + x + ", y=" + y + " ]");
    }

    public void translate(int deltaX, int deltaY)
    {
        x = x + deltaX;
        y = y + deltaY;
    }

    public boolean isLeft(Point otherPoint)
    {
        return (x < otherPoint.x);
    }

    public boolean isRight(Point otherPoint)
    {
        return (x > otherPoint.x);
    }

    public boolean isAbove(Point otherPoint)
    {
        return (y > otherPoint.y);
    }

    public boolean isBelow(Point otherPoint)
    {
        return (y < otherPoint.y);
    }
}

Wir testen die Methoden in unserer Testklasse:

public class Testklasse
{

    public static void main(String[] args)
    {
        Point p1 = new Point(1, 2);
        Point p2 = new Point(2, 4);
        Point p3 = new Point(4, 6);
        Point p4 = new Point(5, 3);

        System.out.println(" p1 : ( " + p1.getX() + ", " + p1.getY() + " )");
        System.out.println(" p2 : ( " + p2.getX() + ", " + p2.getY() + " )");
        System.out.println(" p3 : ( " + p3.getX() + ", " + p3.getY() + " )");   
        System.out.println(" p4 : ( " + p4.getX() + ", " + p4.getY() + " )");

        p1.print();
        p2.print();
        p3.print();
        p4.print();

        p1.print();             // [ x=1, y=2 ]
        p1.translate(4, 3);
        p1.print();             // [ x=5, y=5 ]

        p4.print();             // [ x=5, y=3 ]
        p4.translate(-3, -1);
        p4.print();             // [ x=2, y=2 ]

        System.out.println("p1 links  von p2 ? " + p1.isLeft(p2));      // p1.x=5 > p2.x=2
        System.out.println("p1 rechts von p2 ? " + p1.isRight(p2));
        System.out.println("p3 ueber p4 ? " + p3.isAbove(p4));          // p3.y=6 > p4.y=2
        System.out.println("p3 unter p4 ? " + p3.isBelow(p4));
    }
}

Beachten Sie, dass es immer ein Objekt gibt, das die Methode aufruft und ein Objekt, das der Methode als Parameter übergeben wird. Beispielsweise ist bei p1.isLeft(p2) das Point-Objekt p1 das aufrufende Objekt und das Point-Objekt p2 das Objekt, das der Methode als Parameter"wert" übergeben wird. p1 vergleicht sich also selbst mit p2. Da der x-Wert von p1 5 ist und der x-Wert von p2 ist 2 ergibt p1.isLeft(p2) false. Der Aufruf p2.isLeft(p1) würde dann true ergeben.

Success

Wir haben einen weiteren Datentyp erstellt, nämlich Point. In diesem beispiel gibt es eine Methode translate(), in der die Werte der Objektvariablen x und y geändert werden. Objekte vom Typ Point sind somit nicht immutable (unveränderlich). Der Rückgabetyp solcher Objektmethoden, die die Werte von Objektvariablen ändern, ist typischerweise void. Wir haben außerdem Objektmethoden definiert, in denen sich das aufrufende Objekt mit einem anderen Objekt gleichen Typs vergleicht. Der Vergleich erfolgt über die Werte der Objektvariablen sowohl des aufrufenden Objektes, als auch der Werte der Objektvariablen des Objektes, mit dem verglichen wird (das als Parameter übergeben wird).


Wir festigen unserer neuen Erkenntnisse an einem weiteren Beispiel:

Ein weiterer Datentyp Circle

Wir erstellen uns einen Datentyp, der einen Kreis repräsentiert. Wir nennen den Datentyp Circle. Ein Kreis ist durch seinen radius eindeutig beschrieben. Wir könnten als Objektvariable auch den Durchmesser diameter wählen, das bleibt sich gleich und ist eine eigene Programmierentscheidung. Wir sollten aber keinesfalls radius und diameter als Objekteigenschaften wählen, da es ansonsten zu Inkonsistenten kommen könnte - angenommen, radius hätte den Wert 5 und diameter den Wert 11, das wäre inkonsistent und würde nicht passen. Vielmehr kann der Durchmesser aus dem Radius berechnet werden. Wir implementieren also:

public class Circle
{
    // ------- Objektvariable ---------------
    private double radius;

    // --------- Konstruktor ----------------
    public Circle(double pRadius)
    {
        radius = pRadius;
    }

    // ----- Getter der Objektvariablen -----
    public double getRadius()
    {
        return radius;
    }

    // ----- weitere Objektmethoden ---------
    public double getDiameter()
    {
        return 2.0 * radius;
    }

    public void print()
    {
        System.out.println("Radius      : " + radius);
        System.out.println("Durchmesser : " + getDiameter());   // Aufruf Objektmethode
    }
}

Die Objektvariable radius ist wieder als private deklariert - es gibt keinen Grund, dies nicht zu tun. Wir erlauben aber den lesenden Zugriff darauf durch die Erstellung der getRadius()-Methode, die public ist. Außerdem berechnen wir auch noch den Durchmesser und geben ihn mit der getDiameter()-Methode zurück. Beachten Sie, dass sowohl radius als auch getDiameter() vom Typ double sind. Damit wir die Werte auch ausgeben, haben wir eine print()-Methode erstellt. Beachten Sie, dass wir in der print()-Methode die Objektmethode getDiameter() aufrufen.

Wir testen den Datentyp Circle in der Testklasse:

public class Testklasse
{

    public static void main(String[] args)
    {
        Circle c1 = new Circle(5.0);
        Circle c2 = new Circle(3.5);

        c1.print();
        System.out.println();
        c2.print();
    }
}

Es werden folgende Ausgaben erzeugt:

Radius      : 5.0
Durchmesser : 10.0

Radius      : 3.5
Durchmesser : 7.0

Für einen Kreis können wir auch noch den Umfang circumference() und den Flächeninhalt area() berechnen und verwenden dazu die Konstante PI aus der Math-Klasse (siehe Die Klasse Math). Mit den Ergebnissen der circumference()- und der area()-Methode erweitern wir auch die Ausgabe in print():

public class Circle
{
    // ------- Objektvariable ---------------
    private double radius;

    // --------- Konstruktor ----------------
    public Circle(double pRadius)
    {
        radius = pRadius;
    }

    // ----- Getter der Objektvariablen -----
    public double getRadius()
    {
        return radius;
    }

    // ----- weitere Objektmethoden ---------
    public double getDiameter()
    {
        return 2.0 * radius;
    }

    public void print()
    {
        System.out.println("Radius         : " + radius);
        System.out.println("Durchmesser    : " + getDiameter());    // Aufruf Objektmethode
        System.out.println("Umfang         : " + circumference());  // Aufruf Objektmethode
        System.out.println("Flaecheninhalt : " + area());   // Aufruf Objektmethode
    }

    public double circumference()
    {
        return Math.PI * getDiameter();
    }

    public double area()
    {
        return Math.PI * radius * radius;
    }
}

Das erneute Ausführen der Testklasse (in der Testklasse nichts geändert, aber die print()-Methode wurde geändert) ergibt:

Radius         : 5.0
Durchmesser    : 10.0
Umfang         : 31.41592653589793
Flaecheninhalt : 78.53981633974483

Radius         : 3.5
Durchmesser    : 7.0
Umfang         : 21.991148575128552
Flaecheninhalt : 38.48451000647496

Zur Weiderholung und Festigung wollen wir auch hier zwei Circle-Objekte miteinander vergleichen. Auch hier gibt es immer ein aufrufendes Circle-Objekt und ein Circle-Objekt, das als Parameter übergeben wird. Wir schreiben drei Methoden, die jeweils ein boolean zurückgeben: isSmaller(), isBigger(), isEqual():

public class Circle
{
    // ------- Objektvariable ---------------
    private double radius;

    // --------- Konstruktor ----------------
    public Circle(double pRadius)
    {
        radius = pRadius;
    }

    // ----- Getter der Objektvariablen -----
    public double getRadius()
    {
        return radius;
    }

    // ----- weitere Objektmethoden ---------
    public double getDiameter()
    {
        return 2.0 * radius;
    }

    public void print()
    {
        System.out.println("Radius         : " + radius);
        System.out.println("Durchmesser    : " + getDiameter());    // Aufruf Objektmethode
        System.out.println("Umfang         : " + circumference());  // Aufruf Objektmethode
        System.out.println("Flaecheninhalt : " + area());   // Aufruf Objektmethode
    }

    public double circumference()
    {
        return Math.PI * getDiameter();
    }

    public double area()
    {
        return Math.PI * radius * radius;
    }

    public boolean isSmaller(Circle c)
    {
        return (radius < c.radius);
    }

    public boolean isBigger(Circle c)
    {
        return (radius > c.radius);
    }

    public boolean isEqual(Circle c)
    {
        return !isSmaller(c) && !isBigger(c);
    }
}

In der isEqual()-Methode hätten wir natürlich auch return radius==c.radius; schreiben können. Aber wir wollten hier nochmal die Verwendung von Objektmethoden innerhalb der Klasse zeigen. Die Testklasse

public class Testklasse
{

    public static void main(String[] args)
    {
        Circle c1 = new Circle(5.0);
        Circle c2 = new Circle(3.5);

        c1.print();
        System.out.println();   
        c2.print();

        System.out.println("c1 groesser als c2 ? " + c1.isBigger(c2));      
        System.out.println("c1 kleiner als c2  ? " + c1.isSmaller(c2));     
        System.out.println("c1 gleich c2       ? " + c1.isEqual(c2));
        System.out.println();

        System.out.println("c2 groesser als c1 ? " + c2.isBigger(c1));      
        System.out.println("c2 kleiner als c1  ? " + c2.isSmaller(c1));     
        System.out.println("c2 gleich c1       ? " + c2.isEqual(c1));
        System.out.println();

        System.out.println("c1 groesser als c1 ? " + c1.isBigger(c1));      
        System.out.println("c1 kleiner als c1  ? " + c1.isSmaller(c1));     
        System.out.println("c1 gleich c1       ? " + c1.isEqual(c1));
        System.out.println();   
    }
}

erzeugt folgende Ausgaben (nur die Vergleiche):

bash
c1 groesser als c2 ? true
c1 kleiner als c2  ? false
c1 gleich c2       ? false

c2 groesser als c1 ? false
c2 kleiner als c1  ? true
c2 gleich c1       ? false

c1 groesser als c1 ? false
c1 kleiner als c1  ? false
c1 gleich c1       ? true

Beachten Sie, dass im dritten Vergleichsblock das c1-Objekt mit sich selbst verglichen wird. Auch das ist ohne Probleme möglich (aber normalerweise sinnlos).

Success

Wir haben in diesem dritten Beispiel die ersten Erkenntnisse über das objektorientierte Programmieren wiederholt und gefestigt. In der Klasse Circle haben wir insbesondere häufiger die Objektmethoden innerhalb der Klasse aufgerufen. Die Einführung in die objektorientierte Programmierung ist hiermit zunächst beendet. Beim nächsten Mal werden wir mehrere Konstruktoren in der Klasse definieren, wir werden eigene Datentypen in neuen Datentypen verwenden und das Schlüsselwort this kennenlernen. Viel Spaß beim Üben!

Die Klassen Adresse, Point, Circle und Testklasse
public class Adresse
{
    // --- Objektvariablen -----
    private String strasse;
    private int nummer;
    private int postleitzahl;
    private String wohnort;

    // --- Konstruktor ---------
    public Adresse(String str, int nr, int plz, String ort)
    {
        strasse = str;
        nummer = nr;
        postleitzahl = plz;
        wohnort = ort;
    }

    // --- Objektmethoden ------
    public String getAdresse()
    {
        return strasse + " " + nummer + " in " + postleitzahl + " " + wohnort;
    }

    public String getStrasse()
    {
        return strasse;
    }

    public int getNummer()
    {
        return nummer;
    }

    public int getPostleitzahl()
    {
        return postleitzahl;
    }

    public String getWohnort()
    {
        return wohnort;
    }
}
public class Point
{
    // --- Objektvariablen -----------
    private int x;
    private int y;

    // --- Konstruktor ---------------
    public Point(int px, int py)
    {
        x = px;
        y = py;
    }

    // --- Getter --------------------
    public int getX()
    {
        return x;
    }

    public int getY()
    {
        return y;
    }

    // --- weitere Objektmethoden ----
    public void print()
    {
        System.out.println("[ x=" + x + ", y=" + y + " ]");
    }

    public void translate(int deltaX, int deltaY)
    {
        x = x + deltaX;
        y = y + deltaY;
    }

    public boolean isLeft(Point otherPoint)
    {
        return (x < otherPoint.x);
    }

    public boolean isRight(Point otherPoint)
    {
        return (x > otherPoint.x);
    }

    public boolean isAbove(Point otherPoint)
    {
        return (y > otherPoint.y);
    }

    public boolean isBelow(Point otherPoint)
    {
        return (y < otherPoint.y);
    }
}
public class Circle
{
    // ------- Objektvariable ---------------
    private double radius;

    // --------- Konstruktor ----------------
    public Circle(double pRadius)
    {
        radius = pRadius;
    }

    // ----- Getter der Objektvariablen -----
    public double getRadius()
    {
        return radius;
    }

    // ----- weitere Objektmethoden ---------
    public double getDiameter()
    {
        return 2.0 * radius;
    }

    public void print()
    {
        System.out.println("Radius         : " + radius);
        System.out.println("Durchmesser    : " + getDiameter());    // Aufruf Objektmethode
        System.out.println("Umfang         : " + circumference());  // Aufruf Objektmethode
        System.out.println("Flaecheninhalt : " + area());   // Aufruf Objektmethode
        System.out.println();
    }

    public double circumference()
    {
        return Math.PI * getDiameter();
    }

    public double area()
    {
        return Math.PI * radius * radius;
    }

    public boolean isSmaller(Circle c)
    {
        return (radius < c.radius);
    }

    public boolean isBigger(Circle c)
    {
        return (radius > c.radius);
    }

    public boolean isEqual(Circle c)
    {
        return !isSmaller(c) && !isBigger(c);
    }
}       
public class Testklasse
{

    public static void main(String[] args)
    {
        // Tests fuer Adresse
        System.out.printf("%n%n ---------------- Testen des Datentyps Adresse ------------------ %n%n");
        Adresse adresse1 = new Adresse("Wilhelminenhofstr.", 75, 12459, "Berlin");          
        Adresse adresse2 = new Adresse("Treskowallee", 8, 10318, "Berlin");         

        System.out.println(adresse1.getAdresse());
        System.out.println(adresse2.getAdresse());

        System.out.println("Strasse Nr  : " + adresse1.getStrasse() + " " +  adresse1.getNummer());
        System.out.println("PLZ Wohnort : " + adresse1.getPostleitzahl() + " " + adresse1.getWohnort());

        System.out.println("Strasse Nr  : " + adresse2.getStrasse() + " " +  adresse1.getNummer());
        System.out.println("PLZ Wohnort : " + adresse2.getPostleitzahl() + " " +  adresse1.getWohnort());

        // Tests fuer Point
        System.out.printf("%n%n ---------------- Testen des Datentyps Point ------------------ %n%n");
        Point p1 = new Point(1, 2);
        Point p2 = new Point(2, 4);
        Point p3 = new Point(4, 6);
        Point p4 = new Point(5, 3);

        System.out.println(" p1 : ( " + p1.getX() + ", " + p1.getY() + " )");
        System.out.println(" p2 : ( " + p2.getX() + ", " + p2.getY() + " )");
        System.out.println(" p3 : ( " + p3.getX() + ", " + p3.getY() + " )");   
        System.out.println(" p4 : ( " + p4.getX() + ", " + p4.getY() + " )");

        p1.print();
        p2.print();
        p3.print();
        p4.print();

        p1.print();             // [ x=1, y=2 ]
        p1.translate(4, 3);
        p1.print();             // [ x=5, y=5 ]

        p4.print();             // [ x=5, y=3 ]
        p4.translate(-3, -1);
        p4.print();             // [ x=2, y=2 ]

        System.out.println("p1 links  von p2 ? " + p1.isLeft(p2));      // p1.x=5 > p2.x=2
        System.out.println("p1 rechts von p2 ? " + p1.isRight(p2));
        System.out.println("p3 ueber p4 ? " + p3.isAbove(p4));          // p3.y=6 > p4.y=2
        System.out.println("p3 unter p4 ? " + p3.isBelow(p4));


        // Tests fuer Circle
        System.out.printf("%n%n ---------------- Testen des Datentyps Circle ------------------ %n%n");
        Circle c1 = new Circle(5.0);
        Circle c2 = new Circle(3.5);

        c1.print();
        System.out.println();   
        c2.print();

        System.out.println("c1 groesser als c2 ? " + c1.isBigger(c2));      
        System.out.println("c1 kleiner als c2  ? " + c1.isSmaller(c2));     
        System.out.println("c1 gleich c2       ? " + c1.isEqual(c2));
        System.out.println();

        System.out.println("c2 groesser als c1 ? " + c2.isBigger(c1));      
        System.out.println("c2 kleiner als c1  ? " + c2.isSmaller(c1));     
        System.out.println("c2 gleich c1       ? " + c2.isEqual(c1));
        System.out.println();

        System.out.println("c1 groesser als c1 ? " + c1.isBigger(c1));      
        System.out.println("c1 kleiner als c1  ? " + c1.isSmaller(c1));     
        System.out.println("c1 gleich c1       ? " + c1.isEqual(c1));
        System.out.println();       
    }
}